Uridina

Blog

CasaCasa / Blog / Uridina

May 05, 2023

Uridina

Nature volume 618, pages

Natura volume 618, pagine 151–158 (2023) Citare questo articolo

18k accessi

1 Citazioni

423 Altmetrico

Dettagli sulle metriche

L'adenocarcinoma duttale pancreatico (PDA) è una malattia letale notoriamente resistente alla terapia1,2. Ciò è mediato in parte da un microambiente tumorale complesso3, da una bassa vascolarizzazione4 e da aberrazioni metaboliche5,6. Sebbene il metabolismo alterato guidi la progressione del tumore, lo spettro dei metaboliti utilizzati come nutrienti dal PDA rimane in gran parte sconosciuto. Qui abbiamo identificato l'uridina come combustibile per il PDA in condizioni di deprivazione di glucosio valutando come più di 175 metaboliti abbiano influenzato l'attività metabolica in 21 linee cellulari pancreatiche sotto restrizione di nutrienti. L'utilizzo dell'uridina è fortemente correlato con l'espressione dell'uridina fosforilasi 1 (UPP1), che dimostriamo libera il ribosio derivato dall'uridina per alimentare il metabolismo centrale del carbonio e quindi supportare l'equilibrio redox, la sopravvivenza e la proliferazione nelle cellule PDA limitate dal glucosio. Nel PDA, UPP1 è regolato dalla segnalazione KRAS-MAPK ed è aumentato dalla restrizione dei nutrienti. Coerentemente, i tumori esprimevano un’UPP1 elevata rispetto ai tessuti non tumorali e l’espressione di UPP1 era correlata con una scarsa sopravvivenza in coorti di pazienti con PDA. L'uridina è disponibile nel microambiente tumorale e abbiamo dimostrato che il ribosio derivato dall'uridina viene attivamente catabolizzato nei tumori. Infine, la delezione di UPP1 ha limitato la capacità delle cellule PDA di utilizzare l'uridina e ha ridotto la crescita del tumore in modelli murini immunocompetenti. I nostri dati identificano l'utilizzo dell'uridina come un importante processo metabolico compensatorio nelle cellule PDA private di nutrienti, suggerendo un nuovo asse metabolico per la terapia PDA.

Il PDA rimane uno dei tumori più mortali1,2. Il microambiente tumorale del PDA (TME) contribuisce in modo determinante a questa letalità ed è caratterizzato da un'abbondante infiltrazione di cellule immunitarie, dall'espansione dei fibroblasti stromali e dalla associata deposizione di matrice extracellulare. Ciò porta ad un aumento della pressione del fluido interstiziale e al collasso delle arteriole e dei capillari3,4,7. Questi fenomeni contribuiscono collettivamente alla bassa saturazione di ossigeno, alla resistenza terapeutica, alle alterazioni metaboliche e all'eterogeneità all'interno del tumore a livello cellulare5,8,9. Le cellule PDA che sopravvivono in tale TME deregolamentata da nutrienti e ossigeno mostrano adattamenti metabolici che aumentano le loro capacità di scavenging e cataboliche10,11,12,13. Inoltre, studi recenti hanno definito le fonti di nutrienti estrinseche del tumore per il PDA, tra cui la matrice extracellulare, i metaboliti immunitari e di derivazione stromale14,15,16. Sebbene questi studi abbiano scoperto input nutrizionali discreti, in precedenza non erano stati eseguiti screening completi con il potere di identificare molti di questi fattori e meccanismi nutrizionali.

Per individuare i metaboliti che alimentano il metabolismo nelle cellule PDA private di nutrienti, abbiamo applicato la piattaforma di screening fenotipico Biolog su 19 linee cellulari umane di PDA e 2 linee cellulari di pancreas immortalizzate e non maligne (cellule stellate pancreatiche umane e cellule che esprimono nestina pancreatica umana) (Fig. 1a). Abbiamo utilizzato lo schermo per valutare la capacità cellulare di catturare e metabolizzare più di 175 nutrienti in un formato a 96 pozzetti in condizioni di limitazione dei nutrienti (glucosio 0 mM, glutammina 0,3 mM e siero bovino fetale dializzato al 5% (FBS)). Il pannello dei nutrienti includeva energia di carbonio e substrati di azoto (Tabella supplementare 1). L'attività metabolica è stata valutata monitorando la riduzione di un colorante a base di tetrazolio, una lettura del potenziale riducente cellulare, ogni 15 minuti per circa 3 giorni (Fig. 1a e Dati estesi Fig. 1a). Le analisi dei profili di consumo dei nutrienti hanno rivelato diversi metaboliti che, in assenza di glucosio, sono stati utilizzati a livelli simili al controllo positivo del glucosio (Dati estesi Fig. 1b). Ad esempio, l'adenosina, l'uridina e diversi zuccheri venivano utilizzati dalla maggior parte delle linee cellulari.

a, Schema del test di screening del metabolismo dei nutrienti e correlazione con l'espressione genica nelle linee cellulari e nei tumori PDA. b, correlazione di Spearman (r) tra l'attività metabolica relativa (RMA) normalizzata per il catabolismo dell'uridina nei dati di screening e i dati di espressione dell'mRNA UPP1 da un set di dati indipendente17 (16 linee cellulari PDA). Le linee cellulari alte UPP1 sono mostrate in grassetto. c, L'RMA in un sottogruppo di linee cellulari PDA dopo l'integrazione con uridina 1 mM per 3 giorni in condizioni prive di glucosio. d, Convalida quantitativa PCR (qPCR) dell'espressione dell'mRNA UPP1 in un sottoinsieme di linee cellulari PDA. e, Immunoblot che mostra l'espressione basale di UPP1 nelle linee cellulari PDA. Le macchie sono rappresentative di tre repliche tecniche con risultati simili. f, correlazione di Spearman (r) tra l'analisi della densitometria proteica della macchia in e e l'espressione dell'mRNA di UPP1 nelle otto linee cellulari PDA evidenziate in e. g, I 20 principali geni espressi in modo differenziale dalle linee cellulari PDA che sono stati identificati come consumatori/metabolizzatori ad alto contenuto di uridina rispetto ai consumatori a basso contenuto di uridina dallo screening del metabolismo dei nutrienti. Fonte dati: Cancer Cell Line Encyclopedia (CCLE). I dati in c,d sono la media ± ds Per ulteriori informazioni consultare la sezione Metodi "Statistiche e riproducibilità".

175 metabolites by 19 PDA cell lines and 2 non-PDA pancreatic cell lines was measured every 15 min for ~3 days (74.5 h) using the Biolog OmniLog device. The assay readout, RMA, was correlated with the expression level of metabolic genes in cell lines; human PDA data were used for subsequent analyses. Nutrient-deficient medium, no glucose, 0.3 mM glutamine and 5% dialysed FBS. c, n = 4 biologically independent samples per group. Statistical significance was measured by multiple unpaired two-tailed t-tests (two-stage step-up method) comparing RMA from cells in basal medium vs 1 mM uridine medium (both glucose-free), ****P < 0.0001. The experiments were performed twice with similar results. d, n = 4 biologically independent samples per cell line. The experiment was performed once./p> 0.9999; no glucose/uridine and 1 mM ribose, P = 0.3025; no glucose/uridine and 10 mM ribose, ****P < 0.0001). ASPC1 (comparison between no glucose/uridine and no glucose + 1 mM uridine, ****P < 0.0001; no glucose/uridine and 1 mM glucose/no uridine, ****P < 0.0001; no glucose/uridine and 0.1 mM ribose, P = 0.9974; no glucose/uridine and 1 mM ribose, *P = 0.0103; no glucose/uridine and 10 mM ribose, ****P < 0.0001). The experiment was performed once. b,c, n = 3 biologically independent samples. Statistical significance was measured using two-tailed unpaired t-test. Intracellular: comparison between no uridine and 1 mM uridine: ***P = 0.0005 (uridine), ****P < 0.0001 (uracil); extracellular: comparison between no uridine and 1 mM uridine: ****P < 0.0001 (uridine), **P = 0.008 (uracil). d–f, n = 3 biologically independent samples per cell line. ‘Others’ indicates M other than M+0 or M+5, where applicable. Bars shown for PATU8988S are same as the WT bars (where applicable) for that cell line in the Extended Data Fig. 5. Tracing experiments were performed twice in these cells with similar results. g, Number of samples: sub-Q, tumours from 3 mice injected on the left and right flanks; ortho, tumours from 4 mice. Mode of uridine injection is intratumoural for sub-Q and intraperitoneal for ortho. h, Median concentration of uridine = 24.1 µM; median concentration of uracil = 90.2 µM; n = 22 biologically independent TIF samples. i, Median concentration of glucose = 3.71 mM (plasma) and 0.63 mM (TIF). n = 8 biologically independent plasma samples and 8 TIF samples extracted from 8 tumour samples from same mice. These samples are from the control group of the study in Fig. 4a. Statistical significance was measured with two-tailed unpaired t-test with Welch's correction, ****P < 0.0001. j,k, j shows the mass isotopologue distribution in uridine and k shows in the indicated metabolites. n = 4 biologically independent samples per group per cell line. ‘Others’ indicates M other than M+0 or M+5, where applicable. Data in a–k are shown as mean ± s.d. The metabolomics experiments (b–k) were performed once./p> 0.9999 and P > 0.9999 for WT, 1A and 1B groups, respectively. The experiments were performed three times with similar results. c, n = 4 biologically independent samples per group per cell line. Statistical significance was measured using one-way ANOVA with Tukey's multiple comparisons test. PATU8988S, comparison between no uridine (−) and 1 mM uridine (+): ****P < 0.0001, P > 0.9999 and P = 0.9599 for WT, 1A and 1B groups, respectively. ASPC1, comparison between no uridine (−) and 1 mM uridine (+): ****P < 0.0001, P = 0.9977 and P = 0.6537 for WT, 1A and 1B groups, respectively. The experiments were performed twice with similar results. d, n = 3 biologically independent samples per group. Statistical significance was measured using one-way ANOVA with Dunnett's multiple comparisons test. Comparison between WT and clonal cells 1A or 1B: ****P < 0.0001 (PATU8988S) and ***P = 0.0003 (ASPC1). Data are part of the metabolomics experiments shown in Extended Data Fig. 5a–c. The metabolomics experiment was performed once. e, n = 3 biologically independent samples per group. ‘Others’ indicates M other than M+0 or M+5, where applicable. Data are part of the metabolomics experiments shown in Extended Data Fig. 5e,h,j for ASPC1. The metabolomics experiment was performed once. f, Statistical significance was measured using two-tailed unpaired t-test with Welch's correction. Number of samples and statistical comparison: GSE62452 (NT, 61 vs PDA, 69, ***P = 0001), GSE71729 (middle: NT, 46 vs PDA, 145, *P = 0.0466), GSE71729 (right: primary, 145 vs liver met, PDA, 25, ****P < 0.0001). Box plot statistics: GSE42452 (NT: minimum = 3.582, maximum = 5.633, 25th percentile = 4.036, 75th percentile = 4.504, median = 4.262; PDA: minimum = 3.853, maximum = 5.989, 25th percentile = 4.37, 75th percentile = 4.843, median = 4.535); GSE71729 (NT: minimum = 2.18, maximum = 4.402, 25th percentile = 2.901, 75th percentile = 3.469, median = 3.139; PDA: minimum = 2.293, maximum = 4.725, 25th percentile = 3, 75th percentile = 3.657, median = 3.339); GSE71729 (primary: minimum = 2.293, maximum = 4.725, 25th percentile = 3, 75th percentile = 3.657, median = 3.339; liver metastasis: minimum = 3.306, maximum = 5.768, 25th percentile = 3.564, 75th percentile = 4.498, median = 4.023). g, Representative images from patient 1 of 3 tumour tissues. PanCK, pan-cytokeratin, stain indicates tumour cells. i, Number of samples: UPP1-low, 144; UPP1-high, 144. j, Number of samples: no alteration, 43; G12D, 42. Statistical significance was measured using two-tailed unpaired t-test with Welch's correction, **P = 0.0029. Box plot statistics: no alteration: minimum = 7.797, maximum = 10.66, median = 9.019, 25th percentile = 8.307, 75th percentile = 9.53; KRASG12D: minimum = 8.154, maximum = 11.3, median = 9.385, 25th percentile = 9.019, 75th percentile = 9.905. k, n = 3 biologically independent samples per cell line. Statistical significance was measured using two-tailed unpaired t-test. Comparison between Dox (−) and (+) in iKras* cell A9993: ***P = 0.0002; in iKras cell 8905: **P = 0088. The experiment was performed once. l, Vinculin is used as a loading control. The experiment was performed once. m, 3 biologically independent samples per group. Statistical significance was measured using two-tailed unpaired t-test. Comparison between cells cultured in uridine/glucose-containing medium with and without trametinib treatment: ****P < 0.0001; comparison between cells treated with and without trametinib in the presence of glucose but no uridine: ****P < 0.0001; comparison between cells treated with and without trametinib in the presence of uridine and no glucose: ****P < 0.0001; comparison between cells cultured with no uridine/glucose with and without trametinib treatment: ****P < 0.0001. The experiment was performed once. n, Vinculin is used as a loading control. The experiments were performed twice with similar results. o, Statistical significance was measured using one-way ANOVA with Tukey's multiple comparisons test. n = 4 biologically independent samples per group per cell line. PATU8988S (comparison between cells cultured with and without trametinib in the absence of uridine: ****P < 0.0001, and with uridine supplementation: ****P < 0.0001); DANG (comparison between cells cultured with and without trametinib in the absence of uridine: P = 0.9967, and with uridine supplementation: ****P = 0.0001); ASPC1 (comparison between cells cultured with and without trametinib in the absence of uridine: P = 0.9987, and with uridine supplementation: ***P = 0.0001. The experiment was performed once. Data in b–e,k,m,o are mean ± s.d./p> 25 tissues compared). c. Data obtained from the Human Protein Atlas (URL for ‘Normal’ - https://www.proteinatlas.org/ENSG00000183696-UPP1/tissue/pancreas; PDA – https://www.proteinatlas.org/ENSG00000183696-UPP1/pathology/pancreatic+cancer#img). d. Sample size, n: NT = 19, tumour = 408 (bladder cancer, TCGA); NT = 5, tumour = 154 (glioblastoma, TCGA); NT = 44, tumour = 520 (head and neck cancer, TCGA); NT = 59, tumour = 551 (lung cancer, TCGA); NT = 11, tumour = 184 (oesophageal cancer, TCGA); NT = 52, tumour = 497 (prostate cancer, TCGA); NT = 41, tumour = 452 (colon cancer); health colon mucosa = 50, distant colon = 98, tumour = 98 (colon cancer, GSE44076). NT – non-tumour/adjacent normal tissue. Data (a-b, f) shown as mean ± s.d. The experiments were performed three times with similar results. Box plot statistics – TCGA, bladder carcinoma (primary: minima = 5.83, maxima = 13.5, median = 9.77, 25th percentile = 9.015, 75th percentile = 10.47; normal: minima = 6.61, maxima = 12.43, median = 8.35, 26th percentile = 8.03, 75th percentile = 9.59); glioblastoma multiforme (primary: minima = 5.71, maxima = 11.84, median = 9.585, 25th percentile = 8.79, 75th percentile = 10.143; normal: minima = 7.04, maxima = 7.63, median = 7.4, 25th percentile = 7.36, 75th percentile = 7.61); head and neck squamous cell carcinoma (primary: minima = 6.59, maxima = 15.64, median = 10.75, 25th percentile = 9.787, 75th percentile = 11.565; normal: minima = 6.38, maxima = 13.73, median = 10.42, 25th percentile = 8.672, 75th percentile = 11.065); lung adenocarcinoma (primary: minima = 6.45, maxima = 13.44, median = 9.8, 25th percentile = 9.13, 75th percentile = 10.49; normal: minima = 8.3, maxima = 11.39, median = 9.3, 25th percentile = 8.945, 75th percentile = 9.93); esophageal carcinoma (primary: minima = 6.7, maxima = 13.08, median = 9.26, 25th percentile = 8.578, 75th percentile = 10.21; normal: minima = 6.17, maxima = 12.39, median = 7.62, 25th percentile = 6.7, 75th percentile = 8.26); prostate adenocarcinoma (primary: minima = 3.96, maxima = 9.69, median = 6.58, 25th percentile = 5.98, 75th percentile = 7.14; normal: minima = 4.56, maxima = 8.62, median = 6.97, 25th percentile = 6.447, 75th percentile = 7.24); colon cancer (primary: minima = 6.41, maxima = 12.96, median = 8.535, 25th percentile = 8.068, 75th percentile = 9.07; normal: minima = 7.76, maxima = 11.29, median = 9.57, 25th percentile = 9.09, 75th percentile = 9.92). Colon cancer (GSE44076, primary: minima = 4.564, maxima = 7.608, median = 5.917, 25th percentile = 5.487, 75th percentile = 6.405; normal: minima = 4.568, maxima = 9.154, median = 7.18, 25th percentile = 6.781, 75th percentile = 7.824; healthy colon mucosal cells: minima = 5.884, maxima = 8.279, median = 7.529, 25th percentile = 7.153, 75th percentile = 7.74). Statistical significance was tested using two-sided Wilcoxon or Kruskal-Wallis tests./p>0.9999). h. n = 3 biologically independent samples per group. Statistical significance was measured with one-way ANOVA with Tukey's multiple comparisons test. Comparisons between groups (from left to right): ****P < 0.0001, ****P < 0.0001, ****P < 0.0001 and ****P < 0.0001. The experiments (e, g, h) were performed once with similar results on UPP1 displayed by the three cell lines. i. n = 3 biologically independent samples per group. This blot was run on the same gel as Fig. 3n hence the first two columns (separated by a box) overlap between the two blots. j. Blots (c,i) are representative of two independent experiments; blot e experiment was done once. k. n = 3 biologically independent samples per group. The statistical significance (P < 0.05) was determined using limma package version 3.38.3 in R. l. Statistical significance was measured using one-way ANOVA with Tukey's multiple comparisons test. n = 4 biologically independent samples per group. PATU8988S (comparison between cells cultured with and without trametinib in the absence of uridine: ****P < 0.0001, and with uridine supplementation: ****P < 0.0001); DANG (comparison between cells cultured with and without trametinib in the absence of uridine: **P = 0.0055, and with uridine supplementation: ***P = 0.0009); ASPC1 (comparison between cells cultured with and without trametinib in the absence of uridine: P = not significant, and with uridine supplementation: ****P = 0.0006). Data (b, e, g-h, l) shown as mean ± s.d./p>0.9968), and sgV and sg3 P = ns (0.9583). Data (a, b, d, e) shown as mean ± s.d; horizontal bars in h represent mean value./p>